XAF1 promotes neuroblastoma tumor suppression and is required for KIF1Bβ-mediated apoptosis

نویسندگان

  • Zhang'e Choo
  • Rachel Yu Lin Koh
  • Karin Wallis
  • Timothy Jia Wei Koh
  • Chik Hong Kuick
  • Veronica Sobrado
  • Rajappa S. Kenchappa
  • Amos Hong Pheng Loh
  • Shui Yen Soh
  • Susanne Schlisio
  • Kenneth Tou En Chang
  • Zhi Xiong Chen
چکیده

Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system. Current treatment modalities do not fully exploit the genetic basis between the different molecular subtypes and little is known about the targets discovered in recent mutational and genetic studies. Neuroblastomas with poor prognosis are often characterized by 1p36 deletion, containing the kinesin gene KIF1B. Its beta isoform, KIF1Bβ, is required for NGF withdrawal-dependent apoptosis, mediated by the induction of XIAP-associated Factor 1 (XAF1). Here, we showed that XAF1 low expression correlates with poor survival and disease status. KIF1Bβ deletion results in loss of XAF1 expression, suggesting that XAF1 is indeed a downstream target of KIF1Bβ. XAF1 silencing protects from NGF withdrawal and from KIF1Bβ-mediated apoptosis. Overexpression of XAF1 impairs tumor progression whereas knockdown of XAF1 promotes tumor growth, suggesting that XAF1 may be a candidate tumor suppressor in neuroblastoma and its associated pathway may be important for developing future interventions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA helicase A is a downstream mediator of KIF1Bβ tumor-suppressor function in neuroblastoma.

UNLABELLED Inherited KIF1B loss-of-function mutations in neuroblastomas and pheochromocytomas implicate the kinesin KIF1B as a 1p36.2 tumor suppressor. However, the mechanism of tumor suppression is unknown. We found that KIF1B isoform β (KIF1Bβ) interacts with RNA helicase A (DHX9), causing nuclear accumulation of DHX9, followed by subsequent induction of the proapoptotic XIAP-associated facto...

متن کامل

c-Jun N-terminal kinase (JNK1) upregulates XIAP-associated factor 1 (XAF1) through interferon regulatory factor 1 (IRF-1) in gastrointestinal cancer.

BACKGROUND AND AIMS X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) is a tumor suppressor that can sensitize cancer cell to apoptosis. Intrinsic expression of XAF1 in cancer cell is low. Our purpose is to determine the effect of c-Jun N-terminal kinase 1 (JNK1) on XAF1 expression and the putative mechanism. METHODS XAF1 expression in gastrointestinal (GI) cancer cell line A...

متن کامل

Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma

X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed ...

متن کامل

Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding

XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that ...

متن کامل

Identification of XAF1-MT2A mutual antagonism as a molecular switch in cell-fate decisions under stressful conditions.

XIAP-associated factor 1 (XAF1) is a tumor suppressor that is commonly inactivated in multiple human neoplasms. However, the molecular mechanism underlying its proapoptotic function remains largely undefined. Here, we report that XAF1 induction by heavy metals triggers an apoptotic switch of stress response by destabilizing metallothionein 2A (MT2A). XAF1 directly interacts with MT2A and facili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016